2025年山東理工大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院考研自命題科目考試大綱一覽表
【導(dǎo)語(yǔ)】2025年山東理工大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院考研自命題科目考試大綱一覽表已正式公布,根據(jù)山東理工大學(xué)公告《2025年碩士研究生招生自命題科目考試大綱及參考書目》所示。為了方便廣大考生,以下是在職研究生網(wǎng)小編整理的2025年山東理工大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院考研自命題科目考試大綱一覽表詳細(xì)信息:
科目代碼:432 科目名稱:統(tǒng)計(jì)學(xué) 考試范圍: 一、統(tǒng)計(jì)學(xué)的基本概念 了解統(tǒng)計(jì)學(xué)的基本概念及統(tǒng)計(jì)數(shù)據(jù)的類型;熟練掌握總體、樣本、參數(shù)、統(tǒng)計(jì)量的基本概念。 二、數(shù)據(jù)的搜集 了解數(shù)據(jù)的來源、調(diào)查和搜集數(shù)據(jù)的方法;了解數(shù)據(jù)的誤差及如何對(duì)誤差進(jìn)行控制。三、數(shù)據(jù)的圖表展示 了解數(shù)據(jù)預(yù)處理的方法,能夠?qū)ζ焚|(zhì)數(shù)據(jù)、數(shù)值型數(shù)據(jù)進(jìn)行整理及合理地用圖表進(jìn)行展 示。 四、數(shù)據(jù)的概括性度量 熟練掌握數(shù)據(jù)集中程度的度量方式,包括眾數(shù)、中位數(shù)、分位數(shù);熟練掌握數(shù)據(jù)離散程度的度量方式,包括極差、方差、標(biāo)準(zhǔn)差;掌握異眾比率、四分位差、離散系數(shù);了解偏態(tài)和峰態(tài)的度量方法,包括偏態(tài)系數(shù)和峰態(tài)系數(shù)。 五、概率與概率分布 了解隨機(jī)事件的基本概念;熟練掌握事件概率的定義方式、概率的性質(zhì)及運(yùn)算法則、條件概率及事件的獨(dú)立性;熟練掌握一些常見的離散型和連續(xù)型隨機(jī)變量及其概率分布。 六、統(tǒng)計(jì)量及其抽樣分布 熟練掌握統(tǒng)計(jì)量的概念、常見統(tǒng)計(jì)量的定義及其計(jì)算方法;了解抽樣分布、漸進(jìn)分布以及近似分布的概念;熟練掌握卡方分布、t 分布、F 分布的定義,掌握它們的性質(zhì);熟練掌握正態(tài)總體的抽樣分布的定義及性質(zhì)。 七、參數(shù)估計(jì) 了解參數(shù)估計(jì)的相關(guān)概念;熟練掌握單個(gè)總體均值、方差的區(qū)間估計(jì);掌握兩個(gè)總體均值之差、方差之比例的區(qū)間估計(jì)。熟練掌握估計(jì)量的評(píng)價(jià)標(biāo)準(zhǔn)(無偏性、有效性和相合性)及樣本量的確定方法。 八、假設(shè)檢驗(yàn) 了解假設(shè)檢驗(yàn)的基本概念、兩類錯(cuò)誤的計(jì)算方法及假設(shè)檢驗(yàn)的基本流程;熟練掌握單個(gè)總體均值、方差的假設(shè)檢驗(yàn),掌握兩個(gè)總體均值之差、方差之比的假設(shè)檢驗(yàn)。 九、分類數(shù)據(jù)分析 了解分類數(shù)據(jù)的概念;了解卡方擬合優(yōu)度檢驗(yàn)及列聯(lián)表獨(dú)立性檢驗(yàn);了解列聯(lián)表中的相關(guān)測(cè)量及應(yīng)當(dāng)注意的問題。 十、方差分析 了解方差分析的概念、基本思想及其原理;熟練掌握單因素方差分析的基本步驟;掌握多因素方差分析的基本步驟;了解關(guān)系強(qiáng)度的測(cè)量及如何進(jìn)行多重比較。 十一、一元線性回歸 了解變量間關(guān)系的度量方法;熟練掌握一元線性回歸的模型、參數(shù)的最小二乘估計(jì)、回歸直線的擬合優(yōu)度、顯著性檢驗(yàn);掌握如何對(duì)回歸方程進(jìn)行預(yù)測(cè),了解如何進(jìn)行殘差分析。 十二、參考書目: 《統(tǒng)計(jì)學(xué)》第八版,賈俊平等編,中國(guó)人民大學(xué)出版社。 |
科目代碼:608 科目名稱:數(shù)學(xué)分析 考試范圍: 一、實(shí)數(shù)集與函數(shù) 考試內(nèi)容:確界、函數(shù)。 考試要求:(1)理解確界概念、確界原理、函數(shù)定義;(2)掌握確界及函數(shù)的簡(jiǎn)單運(yùn) 算。 二、數(shù)列極限 考試內(nèi)容:數(shù)列極限,收斂數(shù)列性質(zhì),數(shù)列極限存在法則,柯西收斂準(zhǔn)則。 考試要求:(1)熟練掌握用定義驗(yàn)證簡(jiǎn)單數(shù)列極限的方法;(2)掌握用單調(diào)有界法則、迫斂性定理及性質(zhì)證明數(shù)列極限存在的方法; (3)理解柯西收斂準(zhǔn)則。 三、函數(shù)極限 考試內(nèi)容:函數(shù)極限定義,函數(shù)極限性質(zhì),歸結(jié)原則(海涅定理),柯西準(zhǔn)則,兩個(gè)重要極限,無窮小量。 考試要求:(1)熟練掌握用定義驗(yàn)證簡(jiǎn)單函數(shù)極限的方法;(2)掌握函數(shù)極限性質(zhì)、歸結(jié)原則及柯西準(zhǔn)則;(3)熟練掌握兩個(gè)重要極限; (4)理解無窮小量性質(zhì)。 四、函數(shù)的連續(xù)性 考試內(nèi)容:連續(xù)函數(shù),閉區(qū)間上連續(xù)函數(shù)性質(zhì),一致連續(xù)。 考試要求:(1)掌握函數(shù)連續(xù)性定義及性質(zhì);(2)熟練掌握用定義驗(yàn)證簡(jiǎn)單函數(shù)在某區(qū)間上是一致連續(xù)或非一致連續(xù)的方法。 五、導(dǎo)數(shù)與微分 考試內(nèi)容:導(dǎo)數(shù)定義,求導(dǎo)法則與求導(dǎo)公式,高階導(dǎo)數(shù),微分。 考試要求:(1)掌握導(dǎo)數(shù)定義;(2)掌握可導(dǎo)與連續(xù)的關(guān)系;(3)熟練掌握求導(dǎo)法則及參數(shù)方程所確定函數(shù)的求導(dǎo)方法;(4)掌握高階導(dǎo)數(shù)的計(jì)算方法; (5)理解微分概念。 六、微分中值定理及其應(yīng)用 考試內(nèi)容:中值定理,不定式極限,泰勒公式。 考試要求:(1)熟練掌握微分中值定理;(2)熟練掌握洛必達(dá)法則;(3)理解泰勒定理; (4)熟練掌握函數(shù)單調(diào)性、極值和凹凸性的判別方法。 七、實(shí)數(shù)的完備性 考試內(nèi)容:區(qū)間套定理,聚點(diǎn)定理,有限覆蓋定理。考試要求:掌握各定理及其簡(jiǎn)單應(yīng)用。 八、不定積分 考試內(nèi)容:不定積分基本積分公式及運(yùn)算法則,積分法。 考試要求:(1)熟練掌握換元、分部積分法;(2)掌握某些可有理化函數(shù)的不定積分的求法。 九、定積分 考試內(nèi)容:定積分概念,可積函數(shù)類,定積分性質(zhì),微積分學(xué)基本定理,換元、分部積分法。 考試要求:(1)理解定積分概念;(2)理解可積函數(shù)類及其證明;(3)掌握微積分基本定理;(4)熟練掌握定積分的換元、分部積分法。 十、定積分的應(yīng)用 考試內(nèi)容:平面圖形的面積,平面曲線的弧長(zhǎng),旋轉(zhuǎn)體體積。 考試要求:(1)熟練掌握平面圖形面積及平面曲線弧長(zhǎng)的計(jì)算方法;(2)掌握旋轉(zhuǎn)體的體積及側(cè)面積的計(jì)算方法。 十一、反常積分 考試內(nèi)容:反常積分的收斂與發(fā)散,反常積分的計(jì)算。 考試要求:(1)理解反常積分的收斂與發(fā)散;(2)熟練掌握反常積分的絕對(duì)收斂與條件收斂的判定方法。 十二、數(shù)項(xiàng)級(jí)數(shù) 考試內(nèi)容:數(shù)項(xiàng)級(jí)數(shù),正項(xiàng)級(jí)數(shù),任意項(xiàng)級(jí)數(shù)。 考試要求:(1)掌握數(shù)項(xiàng)級(jí)數(shù)收斂的定義;(2)熟練掌握正項(xiàng)級(jí)數(shù)斂散性的判斷方法; (3)掌握絕對(duì)收斂與條件收斂; (4)理解柯西準(zhǔn)則。 十三、函數(shù)列與函數(shù)項(xiàng)級(jí)數(shù) 考試內(nèi)容:函數(shù)列與函數(shù)項(xiàng)級(jí)數(shù)的一致收斂性,柯西準(zhǔn)則,確界判別法,M 判別法,極限函數(shù)與和函數(shù)的分析性質(zhì)。 考試要求:(1)熟練掌握用定義及判別法判斷函數(shù)列、函數(shù)項(xiàng)級(jí)數(shù)的一致收斂性;(2)掌握極限函數(shù)、和函數(shù)的分析性質(zhì)。 十四、冪級(jí)數(shù) 考試內(nèi)容:阿貝爾定理,收斂區(qū)間,冪級(jí)數(shù)的性質(zhì),初等函數(shù)的冪級(jí)數(shù)展開。 考試要求:(1)掌握阿貝爾定理;(2)掌握一些初等函數(shù)的冪級(jí)數(shù)展開式;(3)熟練掌握冪級(jí)數(shù)和函數(shù)的求解方法。 十五、傅里葉級(jí)數(shù) 考試內(nèi)容:傅里葉級(jí)數(shù),傅里葉級(jí)數(shù)的展開。 考試要求:(1)理解收斂定理;(2)熟練掌握傅里葉展開式。十六、多元函數(shù)的極限與連續(xù) 考試內(nèi)容:二元函數(shù)的極限,局部性質(zhì),二元函數(shù)的連續(xù)。 考試要求:(1)熟練掌握重極限與累次極限的求解;(2)掌握二元函數(shù)連續(xù)與一致連續(xù)的定義;(3)理解二元連續(xù)函數(shù)的性質(zhì)。 十七、多元函數(shù)微分學(xué) 考試內(nèi)容:全微分,偏導(dǎo)數(shù),高階偏導(dǎo)數(shù),二元函數(shù)的極值。 考試要求:(1)熟練掌握二元函數(shù)的偏導(dǎo)數(shù)、全微分的定義;(2)熟練掌握偏導(dǎo)數(shù)及高階偏導(dǎo)數(shù)的求解;(3)理解二元函數(shù)的中值定理和泰勒公式; (4)熟練掌握二元函數(shù)極值的求解。 十八、隱函數(shù)定理及其應(yīng)用 考試內(nèi)容:隱函數(shù)存在定理,隱函數(shù)求導(dǎo)法,空間曲線的切線與法平面,曲面的切平面與法線,條件極值。 考試要求:(1)理解隱函數(shù)存在定理;(2)熟練掌握求隱函數(shù)(組)偏導(dǎo)數(shù)及高階導(dǎo)數(shù)的方法;(3)掌握切線與法平面、切平面與法線的求解; (4)熟練掌握求條件極值的方法。 十九、含參量積分 考試內(nèi)容:含參變量的定積分,含參變量反常積分,一致收斂,含參變量反常積分的分析性質(zhì)。 考試要求:(1)理解含參量積分的概念與性質(zhì);(2)掌握含參量反常積分一致收斂的判定;(3)熟練掌握含參量積分的求值方法。 二十、曲線積分 考試內(nèi)容:第一型曲線積分,第二型曲線積分。 考試要求:(1)理解兩類曲線積分的概念;(2)熟練掌握兩類曲線積分的計(jì)算。 二十一、重積分 考試內(nèi)容:二重積分,三重積分,曲線積分與路徑無關(guān)的條件。 考試要求:(1)掌握二、三重積分計(jì)算方法;(2)理解二、三重積分的變量替換定理; (3)熟練掌握格林公式、曲線積分與路徑無關(guān)的條件; (4)熟練掌握極坐標(biāo)及柱面坐標(biāo)變 換計(jì)算重積分。 二十二、曲面積分 考試內(nèi)容:第一(二)型曲面積分,高斯公式與斯托克斯公式。 考試要求:(1)理解兩類曲面積分的概念;(2)掌握計(jì)算兩類曲面積分的方法;(3) 熟練掌握高斯公式的應(yīng)用;(4)理解斯托克斯公式。 二十三、參考書目: 《數(shù)學(xué)分析》上、下冊(cè)第五版,華東師范大學(xué)數(shù)學(xué)系編,高等教育出版社。 |
科目代碼:856 科目名稱:高等代數(shù) 考試范圍: 一、多項(xiàng)式 熟練掌握帶余除法、轉(zhuǎn)輾相除法以及多項(xiàng)式的最大公因式求解;熟練掌握多項(xiàng)式整 除、互素的性質(zhì)及其推導(dǎo);熟練掌握重因式的判定、余數(shù)定理的應(yīng)用;熟練掌握求解有 理系數(shù)多項(xiàng)式有理根的方法;熟練掌握特定整系數(shù)多項(xiàng)式不可約性的常用判定方法;了 解數(shù)域上多項(xiàng)式的定義、運(yùn)算及其運(yùn)算規(guī)律;了解多項(xiàng)式的因式分解定理、標(biāo)準(zhǔn)分解式、復(fù)系數(shù)與實(shí)系數(shù)多項(xiàng)式的因式分解、多項(xiàng)式的根與性質(zhì)。 二、行列式 熟練掌握有規(guī)律的高階行列式的計(jì)算;能夠熟練應(yīng)用行列式的基本性質(zhì)、代數(shù)余子式及其性質(zhì)解決相關(guān)的計(jì)算問題;熟練掌握拉普拉斯(Laplace)定理在行列式計(jì)算中的應(yīng)用;能夠運(yùn)用克拉默法則求解特定的線性方程組;了解排列、行列式的定義、行列式的基本性質(zhì)的證明。 三、線性方程組 熟練掌握具體向量組的秩和極大線性無關(guān)組的求解方法;熟練掌握含參數(shù)向量組線性關(guān)系的討論與求解的方法;熟練掌握含參數(shù)線性方程組解的討論與求解的方法;熟練掌握線性方程組解向量的性質(zhì)、解的結(jié)構(gòu)及其應(yīng)用;熟練掌握與向量組線性相關(guān)性有關(guān)基本問題的證明方法;理解線性組合、線性相關(guān)、線性無關(guān)的定義與性質(zhì);了解矩陣、矩陣的秩、矩陣的秩與其子式的關(guān)系。 四、矩陣 熟練掌握低階、常見類型矩陣方程的求解;熟練掌握低階矩陣、常見的特殊類型矩陣和分塊矩陣可逆性的判定和求逆矩陣的方法;熟練掌握可逆矩陣、伴隨矩陣、有關(guān)矩陣秩的常見等式和不等式的應(yīng)用和證明方法;了解矩陣的定義、運(yùn)算、運(yùn)算律;了解可逆矩陣、矩陣的逆矩陣、伴隨矩陣的定義;了解初等矩陣、初等變換、矩陣的等價(jià)標(biāo)準(zhǔn)形;了解分塊矩陣的意義及其運(yùn)算性質(zhì)。 五、二次型 熟練掌握含參數(shù)實(shí)二次型定性問題(正定、負(fù)定、半正定、不定)的解法;熟練掌握正定二次型(正定矩陣)有關(guān)基本性質(zhì)和常見結(jié)論的證明方法;熟練掌握合同變換法化二次型為標(biāo)準(zhǔn)形的方法;了解二次型、二次型的矩陣、線性替換的概念;了解復(fù)數(shù)域與實(shí)數(shù)域上二次型的規(guī)范形的唯一性,正負(fù)慣性指數(shù)、符號(hào)差的定義。 六、線性空間 熟練掌握常見線性空間中子空間的判定、維數(shù)和基的求解方法;熟練掌握向量組生成子空間的和與交的基、維數(shù)的求解方法;熟練掌握子空間的維數(shù)公式及初步應(yīng)用;熟練掌握兩個(gè)子空間直和的充要條件、判定和基本證明問題的解法;掌握與向量坐標(biāo)、基變換和坐標(biāo)變換有關(guān)的基本計(jì)算問題的解法;了解線性空間的定義和性質(zhì);了解線性空間的基、維數(shù)、向量坐標(biāo)的定義與性質(zhì);了解子空間的交與和的定義、性質(zhì);了解線性空間同構(gòu)定義和性質(zhì)。 七、線性變換和矩陣相似理論 熟練掌握方陣的特征多項(xiàng)式、特征值、特征向量的計(jì)算方法;熟練掌握方陣對(duì)角化的判定條件和涉及具體方陣對(duì)角化的計(jì)算方法;熟練掌握運(yùn)用矩陣的相似標(biāo)準(zhǔn)形或者哈密頓-凱萊(Hamilton-Cayley)定理計(jì)算矩陣的乘方(多項(xiàng)式)的常用方法;熟練掌握線性變換特征值、特征向量、特征子空間的求解;熟練掌握同一個(gè)線性變換在不同基下的矩陣之間的關(guān)系;熟練掌握線性變換在某一組基下的矩陣是對(duì)角形的充要條件;熟練掌握特殊類型線性變換在某一組基下的矩陣是對(duì)角形矩陣的證明方法;熟練掌握與線性變換的值域、核、秩、零度和不變子空間有關(guān)的基本證明問題的解法。了解線性變換的定義、性質(zhì)、運(yùn)算及運(yùn)算律;了解線性變換的值域、核、秩、零度的概念等有關(guān)理論;了解空間分解為線性變換的不變子空間的直和與線性變換的矩陣之間的關(guān)系。 八、l-矩陣 熟練掌握l-矩陣、l-矩陣逆的定義;熟練掌握l-矩陣可逆的充分必要條件及 其證明過程;熟練掌握化l-矩陣為標(biāo)準(zhǔn)形的方法,包括原理以及化l-矩陣為標(biāo)準(zhǔn)形的 具體題目;熟練掌握l-矩陣的行列式因子、不變因子;熟練掌握矩陣相似的充分必要條 件及其證明過程;熟練掌握矩陣初等因子的定義以及求解矩陣初等因子的計(jì)算過程;熟練掌握矩陣若爾當(dāng)標(biāo)準(zhǔn)形的求法;熟練掌握矩陣有理標(biāo)準(zhǔn)形的求法。 九、歐幾里得空間 熟練掌握用正交線性替換化實(shí)二次型為對(duì)角形的計(jì)算方法(以及對(duì)于實(shí)對(duì)稱矩陣 A 求解正交矩陣T ,使得T -1 AT 為對(duì)角形矩陣);熟練掌握實(shí)對(duì)稱矩陣的特征值、特征向量、特征子空間、合同相似標(biāo)準(zhǔn)形的有關(guān)理論及其基本應(yīng)用,如矩陣分解、正定性的判定與 證明等問題;熟練掌握歐式空間中向量的長(zhǎng)度、夾角、以及將給定的線性無關(guān)的向量組 化為標(biāo)準(zhǔn)正交向量組的計(jì)算方法(施密特(Schmidt)正交化方法);熟練掌握正交矩陣 的基本性質(zhì)和判定、證明方法;熟練掌握歐氏空間中正交變換的定義、性質(zhì)、充要條件,以及常見類型變化正交性的判定和證明方法。了解歐式空間的定義、性質(zhì)、度量矩陣等 概念和理論;了解正交向量組、標(biāo)準(zhǔn)正交基的概念和性質(zhì);了解歐式空間子空間的正交 性、正交補(bǔ)的概念及性質(zhì)。 十、參考書目: 《高等代數(shù)》第四版,北京大學(xué)數(shù)學(xué)系編,高等教育出版社。 |
來源:https://yjsh.sdut.edu.cn/2024/0710/c5139a522208/page.htm
鄭重聲明:上述內(nèi)容為《2025年碩士研究生招生自命題科目考試大綱及參考書目》所示做出的整理,不具有權(quán)威性和官方代表性,一切2025年山東理工大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院考研自命題科目考試大綱一覽表信息應(yīng)以山東理工大學(xué)公布的官方信息為主,以上提供的內(nèi)容僅供廣大考生參考。
- 2024-07-12
- 2024-07-12
- 2024-07-12
- 2024-07-12
- 2024-07-12
- 2024-07-12
- 2024-07-12
- 2024-07-12
科目代碼:908 科目名稱:紡織材料學(xué) 考試范圍: 一、紡織纖維 1.知識(shí)點(diǎn)梳理。纖維結(jié)構(gòu)基礎(chǔ)知識(shí):(1)纖維的大分子結(jié)構(gòu)(纖維大分子主鏈的化學(xué)組成及連接方式、側(cè)基與端基、大分子鏈的...
科目代碼:346 科目名稱:體育綜合 體育綜合(346)包括學(xué)校體育學(xué)、運(yùn)動(dòng)生理學(xué)、運(yùn)動(dòng)訓(xùn)練學(xué)三部分,每部分各占 100 分。 第一部分 學(xué)校體育學(xué) 考試范圍:一、緒論 學(xué)校體育學(xué)的學(xué)科地位、...
科目代碼:621 科目名稱:中西方音樂史 考試范圍: 一、遠(yuǎn)古夏商音樂 二、西周春秋戰(zhàn)國(guó)音樂三、秦漢音樂 四、魏晉南北朝音樂五、隋唐五代音樂 六、宋元音樂 七、明清音樂 八、中國(guó)近現(xiàn)代...
科目代碼:618 科目名稱:美術(shù)史 考試范圍: 一、從中外原始美術(shù)到 20 世紀(jì)后半葉的美術(shù)史知識(shí),涉及繪畫、書法、雕塑、建筑、工藝美術(shù)等領(lǐng)域。 二、從基礎(chǔ)知識(shí)與基本能力兩個(gè)方面,綜合...
科目代碼:211 科目名稱:翻譯碩士英語(yǔ) 考試范圍: 一、考生須具有良好的英語(yǔ)基本功,認(rèn)知詞匯量在 10000 以上,能正確且熟練地運(yùn) 用 6000 個(gè)常用詞匯及其搭配。 二、考生能夠掌握正確的英...
科目代碼:668 科目名稱:信息資源管理 《信息資源管理》是我校招收信息資源管理碩士生設(shè)置的具有選拔性質(zhì)的考試科目。其目的是科學(xué)、公平、有效地測(cè)試考生是否具備攻讀信息資源管理碩...
科目代碼:958 科目名稱:管理學(xué)原理 考試范圍: 第一篇 總 論 第一章 管理導(dǎo)論 1.管理的概念、特征及其本質(zhì); 2.管理的基本職能; 3.管理二重性的基本內(nèi)涵和意義; 4.管理的科學(xué)性與藝術(shù)性...
科目代碼:952 科目名稱:經(jīng)濟(jì)學(xué)綜合(含微觀與宏觀) 復(fù)試科目考試大綱詳見學(xué)院網(wǎng)站 考試說明 本科目滿分 150 分,其中,微觀經(jīng)濟(jì)學(xué)部分為 90 分,宏觀經(jīng)濟(jì)學(xué)部分為60 分。 考試范圍 一、...